28 research outputs found

    Extraction and accuracy assessment of DTMs derived from remotely sensed and field surveying approaches in GIS framework

    Full text link
    © Published under licence by IOP Publishing Ltd. Generating a high precision continuous surface is a key capability required in most geographic information system (GIS) applications. In fact the most commonly used surface type is a digital elevation model (DEM). Recently, there are some sources of remote sensing data that provide DEM information such as; LiDAR, InSAR and ASTER GDEM which ranged from very high to low spatial resolution. However, new methods of topographic field surveying still highly on demand e.g. Differential GPS and Total station devices. In both method of capturing the terrain elevation the post processing need to be applied to create a continuous surface from point clouds. Geostatistical analysis were used to interpolate the taken sample points from site into continuous surface. In current research, we examined the height accuracy of LiDAR point clouds and total station dataset with three non-adoptive interpolation models including, invers distance weightage (IDW), nearest neighbour (NN) and radial basis function (RBF) based on referenced DGPS points. RMSE and R square regression analysis were conducted to reveal the most accurate approaches in pilot study area. The results showed Lidar surveying (less than 0.5 meter RMSE) has higher height accuracy compared to Total station surveying (above 1 meter in RMSE) to extract DTM in flat area; while consumed less computational processing time. Moreover, IDW was the best and accurate interpolation model in both datasets to generate raster cautious terrain model

    GIS-based suitability analysis on hybrid renewal energy site allocation using integrated MODIS and ASTER Satellite imageries in Peninsular Malaysia

    Full text link
    © 2018 Proceedings - 39th Asian Conference on Remote Sensing: Remote Sensing Enabling Prosperity, ACRS 2018 This study attempts to find the most suitable places to establish hybrid renewable energy sites (e.g. biomass and solar energy) in Malaysia. We used space borne satellite-derived solar irradiance estimation which is useful and accurate approach for solar resource calculation. To do so, MODIS Terra and Aqua satellite were used to extract values of Aerosol Optical Depth (AOD) at 550 nm. Subsequently, other topographic contribution factors were derived from ASTER satellite imagery. MODIS satellite imagery was classified by support vector machine to extract land use/land cover. Additionally, sixteen different metrological stations were utilized to calibrate the solar irradiances achieved from MODIS satellite and provide daily wind data over the entire Peninsular Malaysia. Finally, simple additive weighting method was implemented in geographical information system (GIS) platform to develop the hybrid RE suitability model. MODIS solar radiation result showed a high correlation with field observation. The result of hybrid renewable energy suitability analysis revealed that coastal areas of Hulu Terengganu, have high potential for allocating sites. This country scale research can be used as a guidance/preliminary assessment to narrow down the scope of new potential hybrid RE in regional scale

    Quantitative assessment for detection and monitoring of coastline dynamics with temporal RADARSAT images

    Full text link
    © 2018 by the authors. This study aims to detect coastline changes using temporal synthetic aperture radar (SAR) images for the state of Kelantan, Malaysia. Two active images, namely, RADARSAT-1 captured in 2003 and RADARSAT-2 captured in 2014, were used to monitor such changes. We applied noise removal and edge detection filtering on RADARSAT images for preprocessing to remove salt and pepper distortion. Different segmentation analyses were also applied to the filtered images. Firstly, multiresolution segmentation, maximum spectral difference and chessboard segmentation were performed to separate land pixels from ocean ones. Next, the Taguchi method was used to optimise segmentation parameters. Subsequently, a support vector machine algorithm was applied on the optimised segments to classify shorelines with an accuracy of 98% for both temporal images. Results were validated using a thematic map from the Department of Survey and Mapping of Malaysia. The change detection showed an average difference in the shoreline of 12.5 m between 2003 and 2014. The methods developed in this study demonstrate the ability of active SAR sensors to map and detect shoreline changes, especially during low or high tides in tropical regions where passive sensor imagery is often masked by clouds

    Improving landslide detection from airborne laser scanning data using optimized Dempster-Shafer

    Full text link
    © 2018 by the authors. A detailed and state-of-the-art landslide inventory map including precise landslide location is greatly required for landslide susceptibility, hazard, and risk assessments. Traditional techniques employed for landslide detection in tropical regions include field surveys, synthetic aperture radar techniques, and optical remote sensing. However, these techniques are time consuming and costly. Furthermore, complications arise for the generation of accurate landslide location maps in these regions due to dense vegetation in tropical forests. Given its ability to penetrate vegetation cover, high-resolution airborne light detection and ranging (LiDAR) is typically employed to generate accurate landslide maps. The object-based technique generally consists of many homogeneous pixels grouped together in a meaningful way through image segmentation. In this paper, in order to address the limitations of this approach, the final decision is executed using Dempster-Shafer theory (DST) rule combination based on probabilistic output from object-based support vector machine (SVM), random forest (RF), and K-nearest neighbor (KNN) classifiers. Therefore, this research proposes an efficient framework by combining three object-based classifiers using the DST method. Consequently, an existing supervised approach (i.e., fuzzy-based segmentation parameter optimizer) was adopted to optimize multiresolution segmentation parameters such as scale, shape, and compactness. Subsequently, a correlation-based feature selection (CFS) algorithm was employed to select the relevant features. Two study sites were selected to implement the method of landslide detection and evaluation of the proposed method (subset "A" for implementation and subset "B" for the transferrable). The DST method performed well in detecting landslide locations in tropical regions such as Malaysia, with potential applications in other similarly vegetated regions

    Urban Mapping Accuracy Enhancement in High-Rise Built-Up Areas Deployed by 3D-Orthorectification Correction from WorldView-3 and LiDAR Imageries

    Full text link
    Orthorectification is an important step in generating accurate land use/land cover (LULC) from satellite imagery, particularly in urban areas with high-rise buildings. Such buildings generally appear as oblique shapes on very-high-resolution (VHR) satellite images, which reflect a bigger area of coverage than the real built-up area on LULC mapping. This drawback can cause not only uncertainties in urban mapping and LULC classification, but can also result in inaccurate urban change detection. Overestimating volume or area of high-rise buildings has a negative impact on computing the exact amount of environmental heat and emission. Hence, in this study, we propose a method of orthorectfiying VHR WorldView-3 images by integrating light detection and ranging (LiDAR) data to overcome the aforementioned problems. A 3D rational polynomial coefficient (RPC) model was proposed with respect to high-accuracy ground control points collected from the LiDAR data derived from the digital surface model. Multiple probabilities for generating an orthrorectified image from WV-3 were assessed using 3D RCP model to achieve the optimal combination technique, with low vertical and horizontal errors. Ground control point (GCPs) collection is sensitive to variation in number and data collection pattern. These steps are important in orthorectification because they can cause the morbidity of a standard equation, thereby interrupting the stability of 3D RCP model by reducing the accuracy of the orthorectified image. Hence, we assessed the maximum possible scenarios of resampling and ground control point collection techniques to bridge the gap. Results show that the 3D RCP model accurately orthorectifies the VHR satellite image if 20 to 100 GCPs were collected by convenience pattern. In addition, cubic conventional resampling algorithm improved the precision and smoothness of the orthorectified image. According to the root mean square error, the proposed combination technique enhanced the vertical and horizontal accuracies of the geo-positioning process to up to 0.8 and 1.8 m, respectively. Such accuracy is considered very high in orthorectification. The proposed technique is easy to use and can be replicated for other VHR satellite and aerial photos

    Extraction of forest plantation extents using majority voting classification fusion algorithm

    Full text link
    © 2018 Proceedings - 39th Asian Conference on Remote Sensing: Remote Sensing Enabling Prosperity, ACRS 2018 Satellite Phased Array L-band Synthetic Aperture Radar-2 has great advantages in extracting natural and industrial forest plantation in tropical areas, but it suffers from presence of speckle that create problem to identify the forest body. Optimal fusion of Landsat-8 operational land imager bands with ALOS PALSAR-2 can provide the ideal complementary information for an accurate forest extraction while suppressing unwanted information. The goal of this study is to analyze the potential ability of Landsat-8 OLI and ALOS PALSAR-2 as complementary data resources in order to extract land cover especially forest types. Comprehensive preprocessing analysis (e.g. geometric correction, filtering enhancement and polarization combination) were conducted on ALOS PALSAR-2 dataset in order to make the imagery ready for processing. Principal component index method as one of the most effective Pan-Sharpening fusion approaches was used to synthesize Landsat and ALOS PALSAR-2 images. Three different classifiers methods (support vector machine, k-nearest neighborhood, and random forest) were employed and then fused by majority voting algorithm to generate more robust and precise classification result. Accuracy of the final fused result was assessed on the basis of ground truth points by using confusion matrices and kappa coefficient. This study proves that the accurate and reliable majority voting fusion method can be used to extract large-scale land cover with emphasis on natural and industrial forest plantation from synthetic aperture radar and optical datasets

    Oil palm counting and age estimation from WorldView-3 imagery and LiDAR data using an integrated OBIA height model and regression analysis

    Full text link
    Copyright © 2018 Hossein Mojaddadi Rizeei et al. The current study proposes a new method for oil palm age estimation and counting from Worldview-3 satellite image and light detection and range (LiDAR) airborne imagery. A support vector machine algorithm (SVM) of object-based image analysis (OBIA) was implemented for oil palm counting. The sensitivity analysis was conducted on four SVM kernel types with associated segmentation parameters to obtain the optimal crown coverage delineation. Extracting tree's crown was integrated with height model and multiregression methods to accurately estimate the age of trees. The multiregression model with multikernel sizes was examined to achieve the most optimized model for age estimation. Applied models were trained and examined over five different oil palm plantations. The results of oil palm counting had an overall accuracy of 98.80%, while the overall accuracy of age estimation showed 84.91%, over all blocks. The relationship between tree's height and age was significant which supports the polynomial regression function (PRF) model with a 3 × 3 kernel size for under 10-12-year-old oil palm trees, while exponential regression function (ERF) is more fitted for older trees (i.e., 22 years old). Overall, recent remote sensing dataset and machine learning techniques are useful in monitoring and detecting oil palm plantation to maximize productivity

    Air quality index prediction using IDW geostatistical technique and OLS-based GIS technique in Kuala Lumpur, Malaysia

    Full text link
    © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. It is known, that the polluted air influences straightforwardly on human wellbeing. Along these lines, the air quality checking surveys the nature of air and recognize defiled territories. Geographic information systems (GIS) provides appropriate tools for the purpose of creating models and describing spatial relationships. This study aims to develop an AQI prediction algorithm based on some meteorological parameters collected using an inverse distance weighted geostatistical technique analysis results, from measurements of three meteorological stations adjacent to the study area Kuala Lumpur of the period June to August 2018. A GIS spatial statistical analysis approach was used. An ordinary least squares (OLS) process was adopted for the 3 months data separately and three models have been obtained. An accuracy value of model performance has been computed were set as (97, 99, and 97%) respectively, specified thru the analysis. So as to test the model, validation applied again using predicted AQI and compared them with observed AQI data, the accuracy was set as (96, 99, and 93%), respectively. The result indicated a very good fit of the OLS model to the observed points, verified that the consequences of these analyses are able to monitor and predict AQI with high accuracy

    Forest Fire Risk Prediction: A Spatial Deep Neural Network-Based Framework

    Full text link
    Forest fire is one of the foremost environmental disasters that threatens the Australian community. Recognition of the occurrence patterns of fires and the identification of fire risk is beneficial to mitigate probable fire threats. Machine learning techniques are recognized as well-known approaches to solving non-linearity problems such as forest fire risk. However, assessing such environmental multivariate disasters has always been challenging as modelling may be biased from multiple uncertainty sources such as the quality and quantity of input parameters, training processes, and a default setup for hyper-parameters. In this study, we propose a spatial framework to quantify the forest fire risk in the Northern Beaches area of Sydney. Thirty-six significant key indicators contributing to forest fire risk were selected and spatially mapped from different contexts such as topography, morphology, climate, human-induced, social, and physical perspectives as input to our model. Optimized deep neural networks were developed to maximize the capability of the multilayer perceptron for forest fire susceptibility assessment. The results show high precision of developed model against accuracy assessment metrics of ROC = 95.1%, PRC = 93.8%, and k coefficient = 94.3%. The proposed framework follows a stepwise procedure to run multiple scenarios to calculate the probability of forest risk with new input contributing parameters. This model improves adaptability and decision-making as it can be adapted to different regions of Australia with a minor localization adoption requirement of the weighting procedure.</jats:p

    Novel Hybrid Integration Approach of Bagging-Based Fisher’s Linear Discriminant Function for Groundwater Potential Analysis

    Full text link
    © 2019, International Association for Mathematical Geosciences. Groundwater is a vital water source in the rural and urban areas of developing and developed nations. In this study, a novel hybrid integration approach of Fisher’s linear discriminant function (FLDA) with rotation forest (RFLDA) and bagging (BFLDA) ensembles was used for groundwater potential assessment at the Ningtiaota area in Shaanxi, China. A spatial database with 66 groundwater spring locations and 14 groundwater spring contributing factors was prepared; these factors were elevation, aspect, slope, plan and profile curvatures, sediment transport index, stream power index, topographic wetness index, distance to roads and streams, land use, lithology, soil and normalized difference vegetation index. The classifier attribute evaluation method based on the FLDA model was implemented to test the predictive competence of the mentioned contributing factors. The area under curve, confidence interval at 95%, standard error, Friedman test and Wilcoxon signed-rank test were used to compare and validate the success and prediction competence of the three applied models. According to the achieved results, the BFLDA model showed the most prediction competence, followed by the RFLDA and FLDA models, respectively. The resulting groundwater spring potential maps can be used for groundwater development plans and land use planning
    corecore